Data Structures for Range Minimum Queries in Multidimensional Arrays

Hao Yuan Mikhail J. Atallah

Purdue University

January 17, 2010
OUTLINE

- Introduction
- Results
 - Overview
 - Details
 - Step 1: Comparison-Efficient Data Structures
 - Step 2: Random Access Machine Implementation
- Future Work
Definitions

Given a d-dimensional array A with N entries, a Range Minimum Query (RMQ) asks the minimum element in the query range $q = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]$, i.e.,

$$\text{RMQ}(A, q) = \min A[q] = \min_{(k_1, \ldots, k_d) \in q} A[k_1, \ldots, k_d].$$
Applications

- **String Pattern Matching**: 1D RMQ and its related Least Common Ancestor (LCA) problems are fundamental building blocks in suffix trees/arrays.
- **Computational Biology**: Finding min/max number in an alignment tableau (genome sequence analysis).
- **Image Processing**: Finding the lightest/darkest point in a range (Dilate/Erode Filter).
- **Databases**: Range Min/Max Query in OLAP Data Cube.

Example

Select the highest paid employee whose age is between 30 and 40 and joined the company during the period between 1995 and 2005.
1D Range Minimum Query

- Linear Reduction to *Least Common Ancestor* (LCA) Problem
 [Gabow, Bentley and Tarjan 1984]

- LCA: $O(N)$ Preprocessing, $O(1)$ Querying
 [Harel and Tarjan 1984]

- RMQ & LCA: Much Studied
 (Parallelization, Simplification, Distributed Algorithms, etc)
 [Schieber and Vishkin 1988]
 [Bender and Farach-Colton 2000]
 [Alstrup et al. 2002]
Related to the semi-group sum problem (MIN is a semi-group operator)
Data Structures: $O(M)$ preprocessing time and space ($M \geq N$),
$O(\alpha(M, N))$ querying time
- One Dimensional: [Yao 1982], [Alon and Schieber 1987]
- Multidimensional (fixed d): [Chazelle and Rosenberg 1989]
Multidimensional RMQ

Unit-Cost RAM Model:
O(1) cost for: Read/Write Memory, +, −, *, /, <<, >>

Comparison-Based: Array entries can only be compared

Table: Results for \(d\)-dimensional RMQ (\(d\) is fixed). The \(O(\cdot)\) is omitted.

<table>
<thead>
<tr>
<th></th>
<th>Preprocess Time</th>
<th>Space</th>
<th>Querying Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabow et al. 1984</td>
<td>(N \log^{d-1} N)</td>
<td>(N \log^{d-1} N)</td>
<td>(\log^{d-1} N)</td>
</tr>
<tr>
<td>Chazelle and Rosenberg 1989</td>
<td>(M)</td>
<td>(M)</td>
<td>(\alpha^d(M, N))</td>
</tr>
<tr>
<td>Poon 2003</td>
<td>(N(\log^* N)^d)</td>
<td>(N)</td>
<td>1</td>
</tr>
<tr>
<td>Amir et al. 2007 ((d = 2))</td>
<td>(N \log^{[k+1]} N)</td>
<td>(kN)</td>
<td>1</td>
</tr>
<tr>
<td>Our result</td>
<td>(N)</td>
<td>(N)</td>
<td>1</td>
</tr>
</tbody>
</table>
Overview

General Approach

- Design Comparison-Efficient Algorithm:
 Only comparisons between input array entries are counted

- Implement the Algorithm in RAM:
 All the computations are counted

Example: Minimum Spanning Tree Verification
[Komlós 1984] [Dixon, Rauch and Tarjan 1992]
Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Overview

Following the general approach:

- **Comparison-Efficient Data Structures**
 - **New 1D RMQ**
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Overview

Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Overview

Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
Following the general approach:

- **Comparison-Efficient Data Structures**
 - New 1D RMQ
 - Preliminary: $O(N \log N)$-comparison preprocessing and 1-comparison querying
 - Speedup the preprocessing to $O(N)$ comparisons
 - New data structure generalizes to two or higher dimensional cases
 - Preprocessing: $O(N)$ comparisons
 - Querying: $O(1)$ comparisons

- **RAM Implementations**
 - Micro blocks of size $\epsilon \log N$
 - Solve big size query by well-known algorithms
 - Solve small size query by table lookup
If only count comparisons:

- **2D RMQ Lower Bound:** [Demaine, Landau and Weimann, 2009]
 If *NO COMPARISON* is allowed at the query stage, then $\Omega(N \log N)$ comparisons preprocessing is required

- **Our Result:** $O(2.89^d(d + 1)!N)$ comparisons preprocessing, $2^d - 1$ comparisons querying
Canonical Ranges

\[\text{CR}(x) = [5, 8] \]
For each \(p \in CR(x) \), define

\[
\begin{align*}
\text{LeftMin}(x, p) &= \min_{k \in CR(x) \text{ and } k \leq p} A[k] \\
\text{RightMin}(x, p) &= \min_{k \in CR(x) \text{ and } k \geq p} A[k]
\end{align*}
\]

\[
\text{LeftMin}(x, 7) = \min\{ A[5], A[6], A[7] \} \\
\text{RightMin}(x, 7) = \min\{ A[7], A[8] \}
\]
min A[6..14]

LCA(6, 14)

RightMin(x, 6) LeftMin(y, 14)
Pre-Computations

- Naïve Algorithm: $O(N \log N)$ Comparisons
- Faster Approach
 - Sort the canonical ranges by their lengths
 - Compute the LeftMin and RightMin entries for canonical ranges in the sorted order
 - For length-one canonical range $CR(w)$,
 $LeftMin(w, p) = RightMin(w, p) = A[p]$ ($p \in CR(w)$)
 - For a canonical range $CR(w)$ covering more than one position, compute the LeftMin and RightMin arrays in $O(\log |CR(w)|)$ time (instead of $O(|CR(w)|)$)
Case 1: $p \in CR(x)$

\[
\text{LeftMin}(w, p) = \text{LeftMin}(x, p)
\]
Case 2: $p \in CR(y)$

$$\text{LeftMin}(w, p) = \min \left\{ \min CR(x), \text{LeftMin}(y, p) \right\}$$
Case 2: \(p \in CR(y) \)

\[
\text{LeftMin}(w, p) = \min \{ \min CR(x), \quad \text{LeftMin}(y, p) \}
\]

Monotonicity (Non-Increasing): \(\text{LeftMin}(y, p) \geq \text{LeftMin}(y, p + 1) \)

Binary Search!
Example

\[
\begin{align*}
\text{min } CR(x) &= 40 \\
\text{LeftMin}(y, \ldots) &= 90, 70, 50, 20, 10 \\
\text{LeftMin}(w, \ldots) &= 40, 40, 40, 20, 10
\end{align*}
\]
$T(n)$: the number of comparisons to compute the LeftMin and RightMin entries for canonical ranges whose size is at most n

\[
T(1) = 0 \\
T(n) = 2T \left(\frac{n}{2} \right) + O(\log n) \quad \text{for } n \geq 2
\]

We have the preprocessing comparison complexity

\[
T(n) = O(n),
\]

and need to do 1 comparison at the query stage.
2D Canonical Range: Cartesian Product of Two 1D Canonical Ranges
For each 2D canonical range r and a point $p \in r$, compute the 4 "Dominance Min" array entries

- TopLeftMin(r, p)
- TopRightMin(r, p)
- BotLeftMin(r, p)
- BotRightMin(r, p)
For any query range q, we can always divide it into 4 parts, which are all pre-computed.
Efficient Pre-Computations

- For any canonical range \(r \), cut the middle of its longer side to obtain two smaller canonical ranges \(r_1 \) and \(r_2 \)
- Do binary search row by row (or column by column)
- \(O(N) \) comparisons for 2D preprocessing
- Generalize to any fixed dimension \(d \):
 - Preprocess: \(O(2.89^d(d + 1)!N) \) comparisons
 - Query: \(2^d - 1 \) comparisons
Efficient Pre-Computations

- For any canonical range r, cut the middle of its longer side to obtain two smaller canonical ranges r_1 and r_2
- Do binary search row by row (or column by column)
- $O(N)$ comparisons for 2D preprocessing
- Generalize to any fixed dimension d:
 - Preprocess: $O(2.89^d(d + 1)!N)$ comparisons
 - Query: $2^d - 1$ comparisons
For any canonical range \(r \), cut the middle of its longer side to obtain two smaller canonical ranges \(r_1 \) and \(r_2 \).

- Do binary search row by row (or column by column).
- \(O(N) \) comparisons for 2D preprocessing.
- Generalize to any fixed dimension \(d \):
 - Preprocess: \(O(2.89^d(d + 1)!N) \) comparisons
 - Query: \(2^d - 1 \) comparisons

BotLeftMin

```
Binary Search
r1 r2
  p
```

\(BotLeftMin(r, p) \)
Efficient Pre-Computations

- For any canonical range r, cut the middle of its longer side to obtain two smaller canonical ranges r_1 and r_2
- Do binary search row by row (or column by column)
- $O(N)$ comparisons for 2D preprocessing
- Generalize to any fixed dimension d:
 - Preprocess: $O(2.89^d(d + 1)!N)$ comparisons
 - Query: $2^d - 1$ comparisons

![Binary Search Diagram](image-url)
Divide the array into micro blocks of size $\epsilon \log N$

Each block is a d-dimensional cube, with side length $(\epsilon \log N)^{\frac{1}{d}}$

For example in 2D, make each block $\sqrt{\epsilon \log N}$ by $\sqrt{\epsilon \log N}$
For query that crosses the border of any micro block: there exists \(O(N) \)-time preprocessing and constant-time querying data structures to solve it, using dimension reductions and the help of the data structures in [Yao 1982] [Chazelle and Rosenberg 1989]
Overview of RAM Implementations

For query that is complete within a micro block, use table lookup technique (Four Russian’s Trick) to get the locations of at most 2^d candidates to compare at the querying stage.

Based on our linear-comparison preprocessing data structure.
Key Idea: If two micro blocks have the same type, then they should share the same data structures

- Type of a micro block: Comparison results (true/false sequence) of the linear-comparison preprocessing algorithm
- Assume $c\epsilon \log N$ comparisons to preprocess a block: at most $2^{c\epsilon \log N} = N^{c\epsilon}$ possible types
 - Choose $\epsilon < \frac{1}{c}$, then there are only a sublinear number of types:
 $$N^{c\epsilon \text{polylog}(\epsilon \log N)} = o(N)$$
- Recognizing the types for all micro blocks in linear time: Build a linear-depth decision tree according to the linear-comparison preprocessing algorithm
Our unit-cost RAM data structure

- Preprocess in $O(2.89^d(d + 1)!N)$ time and $(2^d d!N)$ space
- Query in $O(3^d)$ time
Future Work:

- Extend the lower bound of [Demaine, Landau and Weimann, 2009]
 - If at most t comparisons are allowed at the querying stage, find the lower bound for the number of comparisons required to preprocess the input
- Dynamic Updates [Poon, 2003]
- Extend our results to the external memory model
Future Work:

- Extend the lower bound of [Demaine, Landau and Weimann, 2009]
 - If at most t comparisons are allowed at the querying stage, find the lower bound for the number of comparisons required to preprocess the input.
- Dynamic Updates [Poon, 2003]
- Extend our results to the external memory model
Future Work:

- Extend the lower bound of [Demaine, Landau and Weimann, 2009]
 - If at most t comparisons are allowed at the querying stage, find the lower bound for the number of comparisons required to preprocess the input

- Dynamic Updates [Poon, 2003]
 - Extend our results to the external memory model
Future Work

Future Work:

- Extend the lower bound of [Demaine, Landau and Weimann, 2009]
 - If at most t comparisons are allowed at the querying stage, find the lower bound for the number of comparisons required to preprocess the input

- Dynamic Updates [Poon, 2003]

- Extend our results to the external memory model
Thank You!